9. (a) Define student's test and its important properties.
(b) Explain the difference between parametric and non-parametric tests.

Roll No. \qquad
BCA/M-18
19003

COMPUTER ORIENTED NUMERICAL AND STATISTICAL METHODS

Paper : BCA-103

Time : Three Hours]
[Maximum Marks : 80
Note : Attempt five questions in all. Question No. 1 is compulsory. In addition to that attempt four more questions, selecting one question from each unit. All questions carry equal marks.

Compulsory Question

1. (a) Give the representation of a real number 0.625 in a computer using single precision IEEE format.
(b) Write the formula for Langrange's Interpalation. Using Langrange's Interpalation find $f(3.5)$ for the following tables of values :

x	$:$	1	2	3	4
$f(x)$	$:$	1	8	27	64

(c) Find the Arithmetic Mean (AM) of the marks obtained by 9 students of a class given below $52,40,70,43,75$, 40, 48, 35, 65.
(d) Find $\operatorname{cov}(x, y)$, if $\Sigma x_{i}=60, \Sigma y_{i}=95, \Sigma x_{i} y_{i}=574, n=10$.

UNIT-I

2. (a) Divide 0.5765 E 7 by 0.2532 E 5 .
(b) Calculate the value of $(1+x)^{2}$ and $\left(x^{2}+2 x\right)+1$ when $x=0.4999 \mathrm{E}(-2)$. Find the relative errors in two methods of calculating the expression. Which is preferred method.
3. (a) Find the root of $x^{2}-2 x+5=0$ using Newton-Raphson method correct to three decimal places.
(b) Apply Euler's method to find an approximate value of y corresponding to $x=0.1$ with 4 sub-divisions, given that

$$
\begin{equation*}
\frac{d y}{d x}=x-y^{2} \text { and } y=1 \text { at } x=0 . \tag{8,8}
\end{equation*}
$$

UNIT-II

4. (a) State and prove Newton-Gregory formula for Backward interpolation.
(b) Determine the polynomial of second degree, which is the best approximation to \sqrt{x} on the point set

$$
\begin{equation*}
\left\{0, \frac{1}{9}, \frac{4}{9}, 1\right\} \tag{8,8}
\end{equation*}
$$

5. (a) Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ using Simpson's $\frac{1}{3}$ rd rule taking $h=\frac{1}{4}$.
19003/150/KD/769
(b) Find the first derivative of the function tabulated below at the point $x=1.1$:

x	$:$	1.0	1.2	1.4	1.6	1.8	2.0
$f(x)$	$:$	0	0.128	0.544	1.296	2.432	4.00

UNIT-III

6. (a) If arithmetic mean and geometric mean of two values are 10 and 8 respectively. Find the two values.
(b) Find the variance and standard deviation for the following data :

x_{i}	4	8	11	17	20	24	32
f_{i}	3	5	9	5	4	3	1

7. (a) Find the corrected values of the following moments using Sheppards correction. The width of classes in the distribution is 10 and $\mu_{2}=113.72, \mu_{3}=-8.11, \mu_{4}=35225$.
(b) Find the probability distribution of the number of sixes in three tosses of a die. Find also the mean and the variance.

UNIT-IV

8. (a) What do you mean by correlation ? Explain various method to study correlation.
(b) Find the regression coefficint of y on x for the data : $\Sigma x=24 ; \Sigma y=44 ; \Sigma x y=306 ; \Sigma x^{2}=164 ; \Sigma y^{2}=574 ; n=4$.
